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PERTURBING POLYNOMIALS 
WITH ALL THEIR ROOTS ON THE UNIT CIRCLE 

MICHAEL J. MOSSINGHOFF, CHRISTOPHER G. PINNER, AND JEFFREY D. VAALER 

ABSTRACT. Given a monic real polynomial with all its roots on the unit circle, 
we ask to what extent one can perturb its middle coefficient and still have a 
polynomial with all its roots on the unit circle. We show that the set of possible 
perturbations forms a closed interval of length at most 4, with 4 achieved only 
for polynomials of the form x24 + cx, + 1 with c in [-2,2]. The problem 
can also be formulated in terms of perturbing the constant coefficient of a 
polynomial having all its roots in [-1, 1]. If we restrict to integer coefficients, 
then the polynomials in question are products of cyclotomics. We show that 
in this case there are no perturbations of length 3 that do not arise from a 
perturbation of length 4. We also investigate the connection between slightly 
perturbed products of cyclotomic polynomials and polynomials with small 
Mahler measure. We describe an algorithm for searching for polynomials with 
small Mahler measure by perturbing the middle coefficients of products of 
cyclotomic polynomials. We show that the complexity of this algorithm is 

O(Cd), where d is the degree, and we report on the polynomials found by 
this algorithm through degree 64. 

1. INTRODUCTION 

In this paper we study the effect of slightly perturbing the middle coefficient of 
a polynomial having all its roots on the unit circle T = {z E C: Iz = 1}. We 
first consider polynomials with real coefficients. Let f be a monic real polynomial 
with even degree 2N having all its roots in T, and let 

B(f) = f,3 E C: all zeros of f(x) - fxN occur in T}. 

We show (Theorem 2.1) that B(f) is a closed real interval of length at most 4. 
Let f be a polynomial with complex coefficients and degree d, 

d 

f(x) = a fl(x - an). 
n=1 

The Mahler measure of f is 

M(f) = lal ]I max{ 1, lanl} = exp ( log If (e2xit) I dt). 
n=1 

If f has integer coefficients, then clearly M(f) >? 1, and a well-known theorem of 
Kronecker (1857) shows that M(f) = 1 if and only if f(x) is a product of cyclotomic 
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polynomials and the monomials ?x. In 1933, D. H. Lehmer [7] asked if there exist 
polynomials having integer coefficients with Mahler measure arbitrarily close to 1. 
No polynomials have been found with measure greater than 1 and smaller than the 
degree 10 polynomial noted by Lehmer, 

M(X10 + X9X7 X6-X5 -X4 -X3 + X + 1) = 1.1762808 ... 

The best result in this direction (up to the constant c) is the bound 

( log log d3 
(1.1) M(f)1 > I+ c log d 

of Dobrowolski [5]. 
A polynomial f of degree d is reciprocal if f(x) - xdf (I/X). Smyth [15] proved 

that if an irreducible polynomial has Mahler measure greater than 1 and less than 
1.3247 ... (the real root of X3 - X -1), then f is a reciprocal polynomial. This fact, 
combined with the observation that the Mahler measure is multiplicative, allows 
us to restrict our attention to monic, irreducible, reciprocal polynomials of even 
degree when searching for polynomials with small Mahler measure. 

Let D (x) denote the nth cyclotomic polynomial 
n 

(D (X) = (X -?:) : 
k 

e2Tri/n 7J (n - ) n~ -e 
k=1 

(k,n)=1 

It is implicit in the proof of (1.1) by Rausch [13] and explicit in the work of Silverman 
[14] that if ae is a root of a polynomial with small Mahler measure, then not only 
is ae a unit but (Dm (a) should pfobably also be a unit for many small M (that is, ae 
should behave very much like a root of unity). Now if ae is a root of the perturbed 
cyclotomic product 

H fDn (X)(n) ? XN, 

n>1 

where En>I e(n)r(n) = 2N, then Drn(oa) is a unit for all m for which e(m) 7 0 
(observe that the resultant of the polynomial with Dm(x) is ?1). Thus we might 
expect such polynomials to be good candidates for small Mahler measure. 

It is worth remarking that the examples 
A/1 M 

17 (m(X) ? X, 2N= p(mn) 

straightforwardly show that Silverman's bound O(dl+O7/ log log d) on the number of 
m such that 1Dm (a) is a unit where ae is not a root of unity cannot be reduced 
beyond 7r d/3 + O(log d) (we are not aware of a better lower bound). 

We note that Lehmer's polynomial may be written 

12 (X2 (X 3 (X) (D6 (X)- 

In ?3 we observe that many of the known polynomials with small Mahler measure 
are in fact slightly perturbed products of cyclotomic polynomials. This suggests 
a method for searching for new polynomials with small measure. We describe an 
algorithm for constructing all polynomials of a given degree d that are products of 
cyclotomic polynomials, subject to certain restrictions on the multiplicity of the fac- 
tors, then testing the Mahler measure of slight perturbations of these polynomials. 
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We show (Theorem 3.1) that the number of polynomials of degree d considered by 
this algorithm is O(Cv), and we describe the polynomials found by implementing 
the algorithm and searching through degree 64. Although many new polynomials 
with small Mahler measure are found, none is smaller than Lehmer's degree 10 
example. 

Finally, we consider products of cyclotomic polynomials whose roots remain on 
the unit circle when their middle coefficient is changed by an integer amount. We 
show (Theorem 4.1) that if f allows- a shift of length 3, then in fact it allows a shift 
of length 4, and we characterize the polynomials that allow a shift this large. We 
also derive some restrictions on polynomials allowing a shift of length 2, and we 
describe the polynomials found by our algorithm that allow a shift of 1 or 2. 

2. POLYNOMIALS WITH REAL COEFFICIENTS 

We prove the following theorem. 

Theorem 2.1. Let f be a monic polynomial of degree 2N > 2 with real coefficients 
and all its roots on the unit circle. The set B(f) is a closed interval in R of length 
at most 4, with 4 achieved only for polynomials of the form x2N + cixN + 1. 

In the proof, we first transform our polynomial f with all its roots on the unit 
circle into a polynomial p with all its roots in the interval [-1, 1]. Defining 

A(p) = {ca E C : all zeros of p(x) - a occur in [-1, 1]}, 

we reduce Theorem 2.1 to the following statement. 

Theorem 2.2. Let p be a monic polynomial of degree N > 1 with real coefficients 
and all its roots in [-1,1]. The set A(p) is a closed interval of length at most 22-N, 
with equality only when p(x) = 21-NTN(x) + C2 for some constant C2, where TN(x) 
is the Nth Chebyshev polynomial. 

2.1. Reduction of Theorem 2.1 to Theorem 2.2. Suppose 
2N 

f (z) = E anZn 
n=O 

is a monic polynomial in R[z] of degree 2N > 2 having all its roots in T. It follows 
easily that f (0) = (-1)m, where m is the multiplicity with which f has a zero at 1, 
and that 

z2Nf (z-1) = f (O)f (z). 

Now if f (0) = -1 we must have an = -a2N-n, for 0 < n < N. In this case aN = 0 

and thus B(f) = {0}. Hence we shall assume f(0) = 1 and that f is reciprocal. 
We note that in this case the multiplicities with which f has zeros at 1 and -1 are 
consequently even. 

Writing z = exp(27riO), we have 
N 

z-Nf (z) = aN + 2 E aN+n cos 2irnO 
n=1 

N 

= aN + 2 E aN+nTn (cos 27ri), 
n=1 
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where 
n 

Tn (z) = E tnmZm, tnn = 2n-1 

m=O 

is the nth Chebyshev polynomial. Thus 
N N N\ 

z-Nf(z) = aN + 2 ? aN+ntn,O + 2 E E( aN+ntnm) (cos 27rO)m 
n= 1 m= 1 n=m 

= 2Np(cos27ro), 

where p(z) is a monic polynomial of degree N with all its zeros in [-1,1]. More 
precisely, if f (z) has a zero at -1 with multiplicity 2k, a zero at 1 with multiplicity 
21, and distinct zeros in the upper half plane at e27icl', e27ric2,... , ric with 
multiplicitiesAi A2,** ,m IM, respectively, then p(z) has a zero at -1 with multi- 
plicity k, a zero at 1 with multiplicity l and zeros at cos(27raem) with mrultiplicity 
1m, for each m. 

Thus 

B(f) - f,3 G C : all zeros of z-Nf (Z) - occur in T} 

= {a c C : all zeros of p(z)-2N-Nfa occur in [-1,1]} 

2NA(p). 

Clearly, the polynomial f (x) = x2N + CXN + 1 corresponds to the polynomial 
p(x) = 2-N(2TN(x) + c) under this pairing. Therefore Theorem 2.1 follows from 
Theorem 2.2. 

2.2. Proof of Theorem 2.2. 

Lemma 2.3. Suppose that p(z) has a zero of multiplicity greater than or equal to 3. 
Then A(p) = {O}. 

Proof. This is immediate from [11, Problem 49, Part V, Chap. 1] on expanding 
p(z) about the point in question. D 

Lemma 2.4. Suppose that p(z) has a zero of multiplicity 2 at either 1 or -1. Then 
A(p) = {O} 

Proof. Suppose that p(z) - a has zeros only in [-1,1], and p'(1) = 0. By Lucas's 
Theorem, the zeros of p'(z) lie in the convex hull of the zeros of p(z) -ca, so p(z) - a 
continues to have a zero at 1. Hence p(l) - =-a = 0. D 

In view of these lemmas we need only prove Theorem 2.2 under the additional 
assumptions that p has zeros of multiplicity at most 2 and that the zeros at -1 
and 1 are of multiplicity 0 or 1. 

It follows that p'(z) has only simple zeros: if p has k distinct roots and N - k 
double roots then, by Rolle's Theorem, p' has at least k - 1 distinct roots between 
the roots of p in addition to N - k roots at the double roots of p; hence each of 
these N - 1 must have multiplicity one. Moreover these roots all lie in (-1, 1). 

Now let -1 < 4j < 42 < < M < 1 be the distinct zeros of p, and let Io, ... 

IM denote the intervals 
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Define Zm(a), m = 0, ... , M, to be the number of real zeros, counted with multi- 
plicity, of p(z) - a in Im. The number of real zeros of p(z) - a, ae - 0, in [-1,1] is 
then 

M 

E Zm (a). 
m=O 

Since each interval Im contains at most one root of p'(z), the functions 

Zm(ar) 

are 
integer-valued, nonnegative, and decrease for ae > 0. Thus 

M 

aE -* E Zm (a) 
m=O 

decreases on (0, oc). A similar argument holds for 
M 

aE * E Zm(-a). 
m=0 

Thus A(p) is an interval, possibly degenerating to a point. 
By the open mapping theorem, p{C \ [-1, 1]} is open, and p{C \ [-1, 1]} = 

C \ A(p), so A(p) is closed. 
Finally, we prove that the length of A(p) is at most 22-N . Let E C C be compact 

and for each integer L > 1 define 
( z 2/L(L-1) 

8L(E) = sup 1 Zk_;l 
zZEL 1<k<l<L J 

It can be shown that {8L(E))}oI is decreasing, and therefore 

p(E) = lim 8L(E) L-*oo 

exists. Here p(E) is called the transfinite diameter of E. Among its most important 
properties are: 

(i) If E1 C E2 C C are compact, then p(EI) < p(E2). 
(ii) If [al, fi] C R is a closed interval, then p([ae, 13]) = (c3- a)/4. 

(iii) If p(z) = zL + bL-lZL-l + + bo is a monic polynomial in C[z], E C C is 
compact, and 

D = {w E C p(w) E El, 
then D C C is compact and 

p(D)L = p(E). 

(iv) Let 1Pn be the class of monic polynomials in C[z] with degree n. For a subset 
E C C define 

Mn (E) = iEnf IIP(Z)II1Ev 

where 

IIP(Z) IIE = SUP IP(Z)I 
zEE 

Then 

p(E) = lim Mn(E)1/. n-*oo 
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These and other properties of p are considered in [6, pp. 264-274]. 
With p(z) as before, let 

D(p) = {w E C: p(w) E A(p)}. 

Obviously D(p) C [-1, 1]. Therefore, 

- length(A(p)) = p(A(p)) = p(D(p))N 
4 

< p([-l, 1])N = 2 

so the length of A(p) is at most 22-N 

Notice that we can only have length 22-N if we have equality in this last in- 
equality and 

p(D) = p([-l, 1]) = 1/2. 

We show that this implies that D(p) = [-1, 1]. 
If D(p) 7 [-1,1] then, since D(p) is plainly a finite union of closed subintervals 

of [-1, 1], there must exist an interval U = [a - 26, a + 26] C [-1, 1] such that 

D(p) C E = [-II 1] \ U. 

We prove that p(E) < 1/2. Define Sn to be the set of roots of the nth Chebyshev 
polynomial Tn (z) that lie in the subinterval V = [a - 6, a + 6]. It is readily seen 
that ISnI > An for some constant A(V) > 0 and all sufficiently large n. 

Recalling that 

1jTn(Z)jjI[-l,l] = 1i 

we take 

q2n(z) -(2 nT (Z))2 (z - a) 82 
ceES (z, ) 

and observe that 

||q2n(z)IIE< 2? r |I - 6_ 2 
IIE 

<22 Sn (1 - - -)a2E 
_ ~~~4 

Hence 

p(D) < p(E) = lim M2n(E) 1/2n < < (16 

Thus D(p) = [-1,1] and p([-l, 1]) = A(p). In particular, writing 

A(p) [c - 21-NJ c + 21-N] 

we have 

IIp(z) -CII[ 1 1] = 21 N 

and 21-NTN (z) is the only monic polynomial of degree N with such a small supre- 
mum norm on [-1,1]. D 
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3. PERTURBED CYCLOTOMICS WITH SMALL MAHLER MEASURE 

Many of the known polynomials with small Mahler measure are slightly per- 
turbed products of cyclotomic polynomials. Examining the list of 437 polynomials 
with Mahler measure less than 1.3 and degree at most 32 compiled by Boyd [2], we 
find that 222 may be written in the form 

(3.1) 1 bD(X)e(n) ? xN, Z e(n) p (n) = 2N, 
n>I n>I 

where all but finitely many of the e(n) are 0. All but 9 of these polynomials have 
e(n) < 2 for all n: seven of the exceptional polynomials have e(2) = 4, the other 
two have a quadratic cyclotomic with multiplicity 3. 

The Mahler measure of a polynomial in two variables is defined by 
I I 

log M(f (x, y)) =j log If (e27ris e27rit)I ds dt. 

Boyd [3] shows that the Mahler measure of a polynomial in two variables is the 
limit of measures of associated polynomials in one variable: 

M(f(x,y)) = lim M(f (x, xn)). 
n-*oo 

The one-variable polynomials associated with the three small two-variable measures 

(3.2) M((yz + l)(y + 1)(z + 1) - yz) = 1.255433... 

(3.3) M((yz + l)(y + z) + yz) = 1.285734... 

(3.4) M((y2 + y + 1)(yz + l)(y + z) - y2z) = 1.315692 ... 
(substituting y = ?xm and z = ?xn ) are also slightly perturbed products of 
cyclotomic polynomials. 

These facts suggest searching for polynomials with small Mahler measure by 
forming all polynomials of the form (3.1) of a given degree 2N, with e(l) < 4, 
e(2) < 4, and e(n) < 2 for n > 2. Since we may restrict to reciprocal polynomials 
with even degree, we further require e(l) and e(2) to be even. 

3.1. Description of the Algorithm. We are given an even integer d = 2N. 
Define 

'SI {(X- 1)2, (X + 1)2, X2 + X + 1, X2 + 1, X2 - x + 1}, 

and for 2 < n < N, let 

Sn = { r(X) : W(r) = 2n} 

For each n, we construct the sets Tm,n for 1 < m < 2 |Snl: 

TM,n = {f ( 
k(X)e(k) E e(k) = m, O < e(k) < 21 

Ak ESn )k E Sn 

So for n > 2, Tm,n is the collection of products of m irreducible cyclotomic poly- 
nomials, each of which has degree 2n, where no factor appears more than twice. 
The sets Tm,j are similar, but the linear cyclotomic factors may appear with mul- 
tiplicity 0, 2, or 4. The sets Tm,n are used repeatedly by the algorithm and are 
constructed during initialization. 

For larger degrees, we further restrict e(l) and e(2) to be at most 2. This requires 
removing from the Tm,1 those polynomials having e(l) = 4 or e(2) = 4. 
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We then enumerate all partitions M' = (in1,.. , rN) of N, 
N 

E mnn = N, 
n=l 

where 0 M mn < 2 1SnI for 1 < n < N. For each such partition, we construct all 
polynomials of the form 

N 

f(X) = 
f fn (X), 
n=l 

where fn(x) E Tm,n, and for each of these polynomials, we test the Mahler measure 
of 

(3.5) f(x)?x 

We also consider adjustments to the coefficients next to the middle one, -forming 

(3.6) f(x) ? x N-1(2 + 1), 

(3.7) f(X) ? xN-l(x2 + x + 1) 

(3.8) f(X) ? xN l(x2 
2 X ? 1) 

Nontrivial upper bounds on the Mahler measure of such perturbed products of 
cyclotomic polynomials can be deduced directly from the work of Amoroso [1]. 

As in [2], we use the Graeffe root-squaring algorithm to detect most of the 
polynomials with large Mahler measure quickly. Given a monic polynomial g, let 
g9 denote the monic polynomial whose roots are the 2mth powers of the roots of 
g. Let am(x) and bm(x) be polynomials satisfying 

gm (x) = am (x2) + Xbm (X2). 

Then we compute gm+, using 

gm+1(x) = a (x) - xb2 (X). 

Clearly, M(gm) M(g)2m. If g is a monic polynomial of degree d, g(0) = 1, and 
M(g) < M for a given number M, then we see from [2] that 

(3.9) lan,ml < (d) + (d 2) (M2m + M-2m - 2) 

where an,m is the coefficient of Xn in gm(x). Also, if in addition g is reciprocal, 
al,m > d-4, and m > 1, then 

(3.10) lan,ml < () + (d -) (M2m + M-2m - 2) 

+2( +M-2m1 -2) ((dj)3+ 

In [2], it is required that the gm have no negative real roots in order to assert (3.10), 
but the proof only requires that any negative real roots appear with multiplicity 
greater than 1. This is guaranteed by having mn > 1. 

We remark that the Graeffe algorithm also allows us to detect cyclotomic poly- 
nomials quickly, since gm+, = gm for sufficiently large mn in this case. 

For each perturbed cyclotomic product g constructed, we compute up to 10 of the 
gm. If the coefficients of gm fail to satisfy (3.9) or (3.10) with M = 1.3, we exclude 
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g from further consideration. If g survives the 10 iterations of root-squaring, we 
remove any cyclotomic factors from g, then compute its measure if this polynomial 
has not been found previously. Bairstow's method [16] is first used to estimate 
the roots of g using machine-precision arithmetic. If the resulting estimate of the 
measure of g is sufficiently small, we use PARI or Maple to compute M(g) to greater 
accuracy. 

Additional details on the implementation of this algorithm may be found in [9] 
or [10]. 

3.2. Analysis of the Algorithm. We prove the following. 

Theorem 3.1. The complexity of the algorithm described above given the input d 
isO (exp ( Vj 70e(3)) for every e > 0 and Q (d/4 exp (~ 7(-3)). 

In order to prove this theorem, we show 

Theorem 3.2. Let r2(n) denote the number of reciprocal polynomials of degree 2n 
that are products of cyclotomic polynomials, where no cyclotomic factor appears 
with multiplicity greater than 2. Then 

(3.11)r22(n) (35((3) n) 

Substituting d = 2n yields an asymptotic estimate for the number of polynomials 
of degree d constructed by the algorithm: 

4 (35 )1/4 / ( / 

The Graeffe algorithm has complexity E(d2) (thavt is, both 0(d2) and Q(d2)), and 
the remaining parts of the algorithm have complexity that is polynomial in d, so 
Theorem 3.1 follows from Theorem 3.2. 

Let c(n) denote the number of polynomials of degree n that are products of 
cyclotomic polynomials, and let P(z) be the generating function for these numbers, 

P(z) = , c(n)en, 
n>O 

taking c(O) = 1. Boyd and Montgomery [4] show that as z tends to 0 in 

R ={zEC: Rez>O, largzl<2 loglog(1/-zD}' 

where C is a fixed positive constant, then 

(z 1/2 / + lgog(1/ IzI) 
(3.12) P(z) = a (log(1/z)) exp(b/z) ( ?O( log('/lt) j)) 

where a = (2ire-Y) 1/2, b - ((2)2 (3)/((6), and -y is Euler's constant. They use this 
to derive an asymptotic formula for c(n), finding- 

c(n) Aexp(Bj_) (100(og log n< 
nrl`ogn log n 

as n -x oc, where 

1 (105((3) 1/2 and B = 1!(15 /2(3))1/- A il w205() 
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Let r(n) denote the number of reciprocal polynomials of degree 2n that are 
products of cyclotomic polynomials, and define 

R(z) E r(n)e-nz 
n>O 

and 

R2 (z) = r2 (n) 
n>O 

taking r(O) = r2(0) = 1. 

Lemma 3.3. As z approaches 0 in 1Z, 

(3.13) R(z) 4/ (loe(/z)) exp(2b/z) 

(3.14) R2(z) 4- exp(4b/3z) 

where a = (27re)-1/2 and b ((2)2 (3)/((6). 

Proof. In product form, 

R(z) (Ze ) 11 
(Zexp(-1(p(m)z/2) 

1>0 m>3 1>0 

= (1 - exp(-z))-2 IJ (1 - exp(-(p(m)z/2))-1. 
m>3 

Similarly, 

P(z) = JJ (1-exp (- p(m)z)) 
m>1 

Thus R(z) = (1 + exp(-z/2)) 2P(z/2), and (3.13) follows from (3.12). 
Now 

R(z) (1 + e-Z + e-2z)2 I (1 + exp(-p(m)z/2) + exp(-o(m)z)) 
R(3z) 

~~m>3 

= (1?l+e-z) R2(Z) 

and 

R(z) 1 exp(4b/3z), 
R(3z) v/3 

so (3.14) follows. g 

Lemma 3.4. r2 (n) is increasing. 
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Proof. We have 

R2(z) (1 e-z)2 II (1 + exp (-(p(m)z/2) + exp (-(p(m)z)) 
m>3 

(1 e-z)2 (11(1 + exp(-3'z) + exp(-2 31z))) 
1>0 

* ( t (1 +exp(- p(m)z/2) +exp?(- (m)z)) 
m>4 

(m,3)=1 

11 (1 + exp(-31 p(m)z) + exp(-2 * 31Yp(m)z))) 
1>0 

1 e-z 2 1 + exp(-(p(m)z/2) + exp(-(p(m)z) 

= t1-e-Z m 1 -exp(-O(m)z) 

(m,3)=1 

where the last step follows from the identity 

H (1?+ w31 + (W2)3) 
31 

1>0 

Thus 

(1 -e-z)R2(z) = 1 ? Z(r2(n) - r2(n - 1))enz 
n>1 

is a generating function for a sequence of positive integers. D 

Proof of Theorem 3.2. We appeal to Ingham's Tauberian Theorem [12]: suppose 
f(z) = fo? e-uz dA(u), A(u) is nondecreasing, and 

f (Z) _V C(M/Z)m,3-1/2 exp ( M/z)" 

uniformly as z -* 0 in any angle of the form IYI < rx, where z = x + iy, m is a real 
constant, and r, C, M, and 3 are positive constants. Then, as u c x, 

1-c aIU'm-/ (uM)C, 
(3.15) A(u) -C 2 (M)m? l/2 exp 

where ae = 31/ ( + 1). 
Let 

f (z) = (1-zez)R2(z) -1= e-UZ dr2 (LuJ). 

Since r2(n) is increasing and 

f (z) 4T exp (4b) 

as z -* 0 in RZ, we apply Ingham's Theorem with 3 = 1, M = 4b/3, m =-1/2, 

and C = 16b/27V3-. We conclude that 

r2 (n) - (nM 3/4exp (2(nM)1/2) 
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Substituting for C and M and using ((2) = ir2/6 and ((6) = 7r6/945 yields (3.11). 

Let S2 (n) be the number of reciprocal polynomials of degree 2n that are products 
of cyclotomic polynomials, where no cyclotomic factor appears with multiplicity 
greater than 2, except possibly the linear cyclotomics, which may have multiplicity 
as great as 4. We may analyze s2((n) in the same way (its generating function is 
R(z)/R(3z)), to find that 

(3.16) s2(n) - / (35(3))1/4n-3/4 exp (23 35( 3)n) 

Comparison with an Exact Formula. In view of the slowly decaying error term 
in (3.12), we might expect r2 and S2 to approach their asymptotic values rather 
slowly. An exact formula for S2 (n) is 

n 

S2(n) Z U Tmk,k| , 

m7n k=1 

where the sum is over all partitions n (Mi1,... ,mn) of n. Now ITm,kI is the 
number of ways to select mn objects from a collection of ISkl objects, where each 
object may be selected at most twice. Thus ITm,kl is the coefficient of xm in 
(1+x+x2)ISkI. Writing 

2n 

(1+x+x 2)n = Cn,kXk, 
k=O 

we have 

Cn,k = Cn,2n-k) 

k/2k 

Cn,k = I:(k i) ( ) 

Using these facts, we compute s2(1500): 

2385753783987905281502413981937925622349509368675889581151794867226. 

The asymptotic estimate from (3.16) is 2.771 .1066, about 16.2% larger than the 
actual value. When n = 2000, our estimate is about 15.1% larger than the exact 
number. 

3.3. Results of the Search. We have implemented this algorithm in C++ and 
run it on Sun SPARC and Intel Pentium computers. For degree d < 50, we allow 
the linear cyclotomics to have multiplicity 4;- for d > 50 all multiplicities are at 
most 2. The perturbations (3.6), (3.7), and (3.8) are checked through d = 56, and 
the middle coefficient adjustment (3.5) is checked through d = 64. Our program 
tested about 700 million polynomials and required approximately 10 weeks of CPU 
time. We summarize our results. 

Our program finds 384 of the 437 polynomials in Boyd's list with Mahler measure 
less than 1.3 and degree at most 32, about 88%. We find 1380 polynomials with 
measure less than 1.3 through degree 64, about 81% of the 1714 such polynomials 
now known [10]. 
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TABLE 1. Smallest Measures as Perturbed Products of Cyclotomic Polynomials 

Measure Polynomial 

1.176280 ... -D2(X)D2(X)b3 (X) 6 (X)-X5 

1.188368 ... (D2 (x)D2X (X) X) (X)D4 (X) 46 (X) 49 (X) + x9 

1.200026 ... (D2 (X) D2 (X) > 4 (X) 46 (X) J7 (X) + X7 

1.201396 ... (4>D2(X)4 (X)4D7(x)(>Jo(x) + xl0)/4l6(x) 

1.202616 ... D2 (X)(D2 (X)>J3 (X) 4 (X)i6 (X) 12 (X) + X7 

1.205019. .. (q>2(x)4>1o(x)4l6 (x)4>26 (x) - X3)/4Xl2 (x) 

1.207950 ... @12 (X)4( (X)13 (X)4 (x)26 (X) 7_(X)9X(X)38 (X) ? X1l 

1.212824. .. (4>l (x)>13(x) >8 (x) 49g(x) 4l3 (x) ? x13) /4l4 (x) 

1.214995 .. . @2 (x)42 (X)43 (X)4 (X)46 (X)41(X) ? x10 

1.216391 ... 21(X)D2(X)43(X)4(X)6(X) XX) + X 

1.218396... (D2 (X) 3 (X) 4(x> (X) 47 (X)4( 2(1 (X) X) ? x12 )/X13 (X) 

1.218855... D2 (X)D2(X)D3(X)24(X)46(X)>710(X) o( 2(x) ?X 

1.219057. .. (b1(x)43(x>14(x)45(x)444(x) ? x15)/4i4(x) 

1.219446... 2(X) D2 (X) D3 (X) D4 (X) 46(X)12 (X) + X 9 

1.219720. .. @x)(X)b23(X)44(X)b4(8(X)49-(X) ? X9 

1.220287... (421 (X)42 (X) 7(X) 16(X)4i4(X)429(X) + X19)/412 (X) 

1.223447 ... ** 
2 

(X) (X)43 (X)44 (X)45 (X)47 (X)o10 (X)42o (x)41 2 (X) - 

1.223777. .. (@1(x)@2(x)@4(x>J6(x>J8(x)4i7(x)4i8(x) ? x17)/4m5(x) 

1.224278. .. 42 x)46 (x)428 (x) ? x8 

1.225503. .. (45 (x)448 (x) ? x10)/44(x) 

1.225619. .. @2(x)@4(x>J6(x)4io(x)426(x)43o(x) - 5 

1.225810. .. (@12(x)@2(xJ5 (X)4io0(X) @4i(X) 17 (X) ? x17) /412 (X) 

1.226092. .. 2(x)@44(x)46 (x)2o (x)426 (x) - 3 

1.226493. .. @1x() 2(x)@3 (x>J6 (xJ9 (x) i7 (x)4i8 (x) ? x18 

1.226993... JD (X)42 (X)34 (X) 4 (X) 6 (X)42 (X) + X1xl0 

1.227785... 4p2 (x) 42 (X) 4 (X) 42 (X) J6 (X) X+ X 

1.228140 ... (2 (X)142 (X) D3 (X) 4 (X)(X)-(X)9(X) -X 

1.229482... (D2(X)(x2(X)4>6(x)D4i(x)>153(X)4168(x)422l(x) ? x22)/425(X) 

1.229566 ... ( 2X (XD65 (X)47(X)436 (X)-x12)/46 (X) 

1.229999... D (x)4 4 (x)>3 (xl>6 (x)4 7(x)422 (x) ? x17 

The algorithm finds the polynomials with the 37 smallest known measures greater 
than 1. Table 1 shows how each of the top thirty polynomials (all the known 
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polynomials having measure less than 1.23) may be expressed as a slightly perturbed 
product of cyclotomic polynomials, or a factor of such a product. 

Lehmer's polynomial (or this polynomial in xk) is detected 241 times using this 
algorithm. 

We find 177 polynomials with measure less than 1.3 that do not appear in previ- 
ous lists and do not seem to be associated with any of the limit points (3.2), (3.3), 
or (3.4) of Mahler measures. Only 11 of these have degree 30 or 32, and none have 
degree less than 30. This supports Boyd's heuristic of restricting to polynomials 
with height 1 in searches of higher degrees [2]. Among these 177 polynomials, the 
one with the smallest measure is 

x32 + x31 + 30 + x29 _ x27 _ x26 -225 - X24 + x21 + 
20 

x16 + x12 + x11-x8-2x7 -x6-X5 + X3 + X2 + X + 

Its measure is 1.236083... , the 47th smallest Mahler measure greater than 1 known, 
and the smallest known among primitive, irreducible, noncyclotomic polynomials 
of degree 32. (We say a polynomial is primitive if it cannot be written as f(xk) for 
some k > 1.) We also note a new record polynomial of degree 34. Its measure is 
1.220287... , the 16th smallest known, but it is associated with the smallest known 
limit point of Mahler measures. 

We find that each of the coefficient adjustments considered is very successful in 
creating polynomials with small Mahler measure. Through degree 56, the middle 
coefficient shift (3.5) finds 1031 primitive, irreducible polynomials with measure 
greater than 1 and less than 1.3. The perturbation (3.6) detects 990 polynomials, 
and the adjustments (3.7) and (3.8) together find 1031 polynomials. 

A Salem number is a real algebraic integer greater than 1, all of whose conjugates 
lie inside or on the unit circle, with at least one conjugate on the unit circle. The 
smallest known Salem number is 1.1762808... , the real root larger than one of 
Lehmer's polynomial. Our algorithm finds no new Salem numbers, and detects 
only 23 of the 43 previously known Salem numbers less than 1.3. 

A complete list of the known primitive, irreducible, noncyclotomic polynomials 
with measure less than 1.3 and degree at most 64 may be found at the first author's 
World Wide Web site, accessible from the Number Theory Web. 

4. SHIFTED CYCLOTOMICS THAT REMAIN CYCLOTOMIC 

Suppose F(x) and G(x) are products of cyclotomic polynomials, 

(4.1) F(x) = I|J 4>(X)e(n), G(x) =][I 7 n (X)f( n) 
n>1 n>1 

with even degree 2N, 

2N = E e(n)(o(n) = f (n)(n), 
n>1 n>1 

and 

(4.2) F(x) - G(x) = lxN 

for some positive integer 1. Then 1 < 4 by Theorem 2.1. We show that the polyno- 
mials allowing 1 = 3 belong to the same family as those allowing 1 = 4. 
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Theorem 4.1. If F(x) and G(x) are products of cyclotomic polynomials of degree 
2N for which (4.2) holds with 1 = 3 or 4, then F(x) and G(x) must arise from a 
four-shift sequence of the form 

(xN W)2, X2N - XN + 1, X2N +, x2N + xN + 1, (xN + 1) 2. 

Although we need only consider the case 1 = 3, we prove the theorem without 
this assumption, as the extra work required is minimal and it seems of some interest 
that the result follows from purely arithmetic considerations. 

We require a result of E. T. Lehmer [8] on the resultant of two cyclotomic 
polynomials. 

Lemma 4.2. Suppose n > m. Then 

ResQJ>n_ -bm f{P(m) if n = mpk, p a prime, 
1 otherwise. 

Proof of Theorem 4. 1. By Lemma 2.3, we may assume the exponents in (4.1) satisfy 

O < e(n) < 2, 0 < f(n) < 2. 

Suppose that p is a prime with p'(P) 1 for some a(p) > 1, and that n and r are 
integers such that (p,n) = 1, e((npr) 0 0, and e(npi) = f(np3) = 0 for all j > r 
(reversing the roles of e and f if necessary). Taking resultants, we have 

p,(npr) = Res(F - xN, 4bnpr) 

= Res(G, 4>npr) 

= f Res(4m,4 npr)f(m) 

m>1 

and comparing powers of p, 
r-1 

43) at (p) (p (npr ) =E f (npj) ) t (npj ) 
j=O 

Thus r > I and f(npi) # O for some j with O < j < r. Now f(npJ) < 2, so 

(4.4) a>(p)(p-l) < 2(1 +(p- 1)(1+ p +.+p pr-2))/pr-1 = 2. 
Thus p = 3 and a (3) = 1, or p = 2 and a (2) = 1 or 2, and so 1 = 1, 2, 3, 4, 6, or 
12. Moreover, if p = 3 or p = 2 and a(2) = 2 we have equality in (4.4), and hence 

(4.5) f(n) = f(pn) = f(p2n) = = f n(pr-l) = 2. 

Since f(npi) = 0 for some j, we find similarly that 

1WA(npj ) = Res (Fl (Dnp ) ) 

and so 
r-1 

(4.6) 
a 
(p) p(np3) = e(npr)>p(r,pi) ? Ee(npi>)p( npmin{ij}) 

i=O 

If p = 3 or p = 2 and a(2) = 2, we have e(npz) = 0 for 0 < i < r by (4.5), so (4.6) 
becomes 

(4.7) a (p) = e(npr), 
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and if p = 2 and a(2) = 1, then (4.6) shows that e(2rn) = 1 and e(2zn) = 0 for 
0 < i <r. 

We now dismiss the cases 1 = 6 and 1 = 12. Select m to be the largest integer 
such that (m, 3) = 1 and either e(m) = 0 or f(m) #& 0; then select k to be the 
largest integer such that e(3km) # 0 or f(3km) # 0. Assume e(3km) #& 0. As 3 1 1, 
we have e(3km) = 1 and f(m) =-2. But if 4 1 1, we must have e(3km) 2, and if 
2 11 1, then e(2zm) =& 0 for some i > 1, contradicting our choice of m. 

If 1 = 4, all the nonzero e(n) and f(n) are 2, so we write 

F(x) = U2(X), G(x) = V2(X), (u(x) + v(x))(u(x) -v(x)) 4x N 

for some polynomials u(x) and v(x) of degree N, and so 

u(x) + v(x) -=2'x'-j 

u(x) - v(x) = ?22-iXj 

for some 0 <i < 2 and 0 < j < N. Thus 

F(x) = (2il-xN-j + 21-ix )2, 

G(x) = (2i-1xN-i - 21-xi )2. 

Since F(x) and G(x) are products of cyclotomic polynomials, we must have i 1 
and j = 0 or N, and 

F(x) = (xN + 1)2, G(x) = (xN - 1)2 

as claimed. 
If 1 = 3, we define the sets 

S = {n : e(n3r(n)) # 0, e(n3i) = f (n3i) = 0, j > r(n)}, 

T =n : f(n3r(n)) # 0, e(n3i) f (n3i) 0, j > r(n)}. 

By (4.5) and (4.7) we may write 

r(m)-1 

F(x) =]I J n3 (n)(X) J JJ j W(), 
nES mET j=O 

r (m)-1 

G(x) = fI 4bn3r(n)(X) 2I fI m3i(X) 
nET mES j=0 

Observing the identities 

kX 4?(n Xpk) k-I 
Xk1 

np 
(I)n Xp 

k1 ri npi (X = 
OI) 3=0 

for (n,p) = 1, and setting 

U(X) = l (bn (X3`() 1v 

nES 

V(X) = ] bn (X3 ) 

nET 
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we obtain 

F(x) U(X3) 2 

G(x) V(X3) u2 (X). 

Thus deg u + deg v = N, 

(4.8) U(X3)V3(X) - U3(X)V(X3) = 3XNU(X)V(X), 

and by replacing u(x) and v(x) with -u(x) and -v(x) if necessary, we may assume 
u(O) = v(O) = 1. Let k be the smallest integer such that the coefficient of xk in 
u(x) and v(x) differs, and write 

(4.9) u(x) = p(x) + xks(x), v(x) = p(x) + xkt(x), 

where p(x) has degree at most k - 1. Substituting into (4.8) yields 

3p(x3)p2(x)(t(x) - s(x))xk + w(x)x2k 3xNu(x)v(x) 

for some polynomial w(x). As p(O) = u(O) = v(O) = 1 and s(O) #& t(O), we have 
k = N, and (4.9) shows that one of u(x) and v(x) has degree 0 and the other has 
degree N. Therefore either u(x) = 1 and v(x) = 1 i xN, or u(x) = 1 ? xN and 
v(x) = 1. Thus 

F(x)= (xN + 1)2, G(x) =.t2N _xN +1 

F(x) =X2N + xN + 1 G(x) = (xN 1)2 

are the only solutions. 

4.1. Shifts of Length 1 or 2. We derive some restrictions on products of cyclo- 
tomic polynomials whose roots remain on the unit circle when their middle coeffi- 
cient is shifted by 2, and we describe the polynomials found by our algorithm that 
remain products of cyclotomic polynomials when their middle coefficient is shifted 
by 1 or 2. 

Suppose 1 = 2, and choose n and r so that n is odd, e(n2r) # 0, and e(n23) 
f (n2i) = 0 for j > r. We have seen that e(n2r) = 1, e(n23) = 0 for j < r, and 
(4.3) becomes 

r-1 

2r1 f(n) +E 2-f(2in). 
j=1 

The sequence {f(2in)} for 0 < j < r - 1 must therefore take on one of the five 
forms 

2, ... ,2,0, 

0,... .0.2, 
1,... ,1, 
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Each of these configurations can occur. For example, 

D2r (X) = 2 r-2 (X) + 2x2, 

42r-1 (X) = : (4 ) ? 2x2 
( 2r- 1p-2j-1+ 

(Dp(X)(2p(X) .. 4?'r-lp(X)) (42j (X)4D2?+l (X) ''r-(X)) .2.1 ?211 ) 

= 4D2rp(X)4D2r(X) (X 1) + 2x2lp-2i 1 

( 4P(X) 442 -p(X) (1 (X 2i (X)(D2j+l (X) 
.. 

' ' 2r-1 (X)) ( 2j-1 ) 

D2 p (X) >2r (X) (X? 1 - 2x 2r-1p-23 

Our search finds many products of cyclotomic polynomials that remain products 
of cyclotomic polynomials after shifting their middle coefficient by 2. All of the 
primitive examples found have the form 

(xN+l + 1)(xN - 1) 2x N (XN+1 - 1)(XN + 1) 
x-1 x-1 

with N a positive integer, or 

(XN+2 + 1)(XN - 1) + 2x N (X+ -N1)(XN + 1) 
x2 -1 x2- 1 

with N odd. 
Our search also finds many products of cyclotomic polynomials that allow a 

shift of exactly 1. Taking the symmetry of f (x) and f (-x) into account, we detect 
449 essentially different primitive pairs of such polynomials through degree 64. Of 
these, 401 have the form 

(XN+m + s)(XN+n + r) N (xN+m+n + r)(xN + s) 
(xm - )(x rs) - (Xm - )(Xn- rs) 

where r and s are ?1 and either r = s -1 or r = -s, and N, m, and n 
satisfy certain divisibility conditions so that the two rational functions are in fact 
polynomials. All but 9 of the remaining pairs are described by one of the families 

(xN _ S)(xN+2 - S) N x2N+2 + xN+1 + 

X2 + SX + 1 
sx = 

2 + SX +1 x?x ?1x?s? 

(xN ? r)(xN+1 ? s)(x2N+1 ? rs) + x2N (x2N ? rxN ? 1) (X2N+2 ? sx N+ ?) 

x -rsx +1 x2 -rsx +1 
(XN + s)(x N+2 _ S)(x 2N+2 - 1) 2N (X2N + sxN + 1)(X2N+4 - SXN+2 + 1) 

X4 + X2 + 1 X4 + X2 + 1 
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where r and s are ?1 and N satisfies certain constraints modulo 6. The 9 excep- 
tional pairs are listed below: 

D4(X)>J3o(X) + X5 = D3(X) D24(X), 

D4(X)J16(X)>J30(X) + X9 = D5(X)D18(X)D24(X)) 

(D2(X) (x)2(xJ4(>3ox ?X12 ~(>2(>2() 42 (6(X)@ (x12 (X) + (X1 (X = x5(X)20(X)21(X) 

(1l(X)(D2(X)(D3(X)(D4(X)(D5(X)26(X) + X12= 3O(X)(D6O(X), 

4D3 (X) >24 (X) 15o (X) + X15 = D44(X)116 (X)D30o(X)436 (X), 

41 (x)2 (X)>3 (X)>14(X)>5 (X6 (X()8 (X)424 (X)>42 (X) ? = D6O(X)>7O(X), 

D3 (X) >24 (X) >27 (X) 15o (X) + X = 4 (X)>15 (x)1l8 (X)>12o (X)36 (X)14o (X), 

412 (X)@ (X)3 (X)$4 (X)6 (X)>7 (X)>8 (X)>24 (X)15o (X) ? X2 70 (X)84 (X), 

4D3 (X) >6 (x) 427 (X) 43O (X) >56 (X) + X27 = D4 (X)>5 (x)12O (X)>14O (X)$45 (X)- 

REFERENCES 

[1] F. Amoroso, Algebraic numbers close to 1 and variants of Mahler's measure, J. Number 
Theory 60 (1996), 80-96. MR 97g:11075 

[2] D. W. Boyd, Reciprocal polynomials having small measure. 1, 11, Math. Comp. 35 (1980), 
1361-1377; II 53 (1989), 355-357, S1-S5. MR 82a:30005; MR 89m:30013 

[3] , Speculations concerning the range of Mahler's measure, Canad. Math. Bull. 24 
(1981), 453-469. MR 83h:12002 

[4] D. W. Boyd and H. L. Montgomery, Cyclotomic partitions, in Number Theory (R. A. Mollin, 
ed.), Walter de Gruyter, 1990, 7-25. MR 92b:11073 

[5] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polyno- 
mial, Acta Arith. 34 (1979), 391-401. MR 80i:10040 

[6] E. Hille, Analytic Function Theory, Vol. II, Chelsea, 1987. 
[7] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), 

461-479. 
[8] E. T. Lehmer, A numerical function applied to cyclotomy, Bull. Amer. Math. Soc. 36 (1930), 

291-298. 
[9] M. J. Mossinghoff, Algorithms for the determination of polynomials with small Mahler mea- 

sure, Ph.D. Thesis, The University of Texas at Austin, 1995. 
[10] M. J. Mossinghoff, Polynomials with small Mahler measure, Math. Comp. 67 (1998), 1697- 

1705. 
[11] G. P6lya and G. Szeg6, Problems and Theorems in Analysis, II, Springer-Verlag, 1976. MR 

57:5529 
[12] A. G. Postnikov, Introduction to Analytic Number Theory, Transl. Math. Monogr., vol. 68, 

Amer. Math. Soc., 1988. MR 89a:11001 
[13] U. Rausch, On a theorem of Dobrowolski about conjugate numbers, Colloq. Math. 50 (1985), 

137-142. MR 87i:11144 
[14] J. H. Silverman, Exceptional units and numbers of small Mahler measure, Experiment. Math. 

4 (1995), 69-83. MR 96j:11150 
[15] C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, 

Bull. London Math. Soc. 3 (1971), 169-175. MR 44:6641 
[16] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1980. MR 

83d:65002 



1726 M. J. MOSSINGHOFF, C. G. PINNER, AND J. D. VAALER 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712 

Current address: Department of Mathematical Sciences, Appalachian State University, Boone, 
North Carolina 28608 

E-mail address: mjm@math. appstate. edu 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712 

Current address: Department of Mathematics and Statistics, University of Ottawa, 585 King 
Edward Ave., Ontario KiN 6N5, Canada 

E-mail address: pinner@mathstat . uottawa. ca 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712 

E-mail address: vaaler@math. utexas .edu 


	Cit r370_c377: 


